_	EIS000241
2	ROBERT JEFFERSON,
3	appeared and gave the following statement: RECEIVED
4	OCT 0 5 1999
5	MR. JEFFERSON: My background has to do with
6	the transportation of radioactive materials. I,
7	for a number of years, headed up the program on
8	transportation safety at Sandia National Labs in
9	Albuquerque.
10	I'd like to point out a few things.
11	First of all, transporting spent fuel is not some
12	up-and-coming industry that's never been
13	accomplished before, but has, in fact, been
14	accomplished for the past 30 years; not only in
15	this country, but throughout the world.
16	The regulations that govern the design
17	and operation of the equipment that's used for this
18	are uniform worldwide, and I participated in
19	establishing those regulations.
20	So the history that we have to draw on
21	for the transport of these materials is not only
22	established in this country, but in other countries
23	throughout the world.
24	And in the past 30 years in this country
25	there have been almost 3,000 shipments. Worldwide

cont.	1	they have been something on the order of 12,000
	2	shipments.
	3	In that experience there have been
	4	accidents. There have been accidents transporting
	5	other radioactive materials other than spent fuel.
	6	But in no case where those materials were
	7	transported in the type of equipment that will be
	8	used for transporting spent fuel to Yucca Mountain
	9	has there ever been an accident that even came
	10	close to challenging the integrity of the
	11	containers that will be used, or the casks.
	12	In the mid-70s at Sandia, the
	13	organization that I headed up, conducted a series
	14	of full-scale tests using the equipment that had
	15	been retired from service under controlled
	16	conditions, to evaluate not so much the container's
	17	ability to survive the accident, but to evaluate
	18	our capability to predict the damage that would
	19	occur in accident situations.
	20	So what we did was we thoroughly
	21	analyzed each accident before it took place,
	22	published our results, invited people to watch the
	23	tests, and for the first test in the series we had
	24	900 people show up.
	25	And as an aside, it created some

(2)

1	interesting situations, including a state policeman
2	from the state of Idaho who was on duty. It was
3	his duty to come there, and the State of Idaho
4	requires him, when on duty, to carry a sidearm.
5	Only this test was conducted in a
6	security area, and the federal regulations say you
7	can't take a sidearm into a security area. So it
8	took a while to get that straightened out, and that
9	delayed the first test several hours.
10	But nonetheless, these tests were
11	conducted in the broadest possible public scrutiny.
12	And in every case, the results that had been
13	predicted were slightly worse than the results
14	expected.
15	But the important thing was that we had
16	in hand the tools, the technical tools, to evaluate
17	these accidents and other accidents. And so, on
18	that basis, we have continually over the years
19	improved our ability at predicting the results of
20	insults against these very, very large, heavy,
21	rigid shipping containers.
22	It was on that basis that the Nuclear
23	Regulatory Commission and the DOE conducted a
24	number of studies on what might happen. And the
25	result of these is incorporated into the EIS.

	1	Many of the terms there are terms that
	2	are familiar and have been in place now since the
	3	early '80s, and, in fact, point out that the
	4	insults that you would expect to these containers
	5	during transportations very rarely, if ever,
	6	challenge the integrity of the container.
2	7	The EIS uses six accident severity
	8	categories. The first category contains 99 percent
	9	of all the accidents. And understand that there
	10	are, I think, 40 accidents predicted in the EIS,
	11	and that's simply a mileage basis thing.
	12	But you've got to understand that that
	13	mileage is both ways. So more than likely half of
	14	those accidents would involve a container that has
	15	nothing in it. So it doesn't make any difference
	16	how severe the accident is, it's still going to
	17	release nothing.
	18	So that leaves us with about 20
	19	accidents that are involving these materials. And
	20	of those, 99 percent, or about 19.8 of those
	21	accidents, would be within the first category,
	22	accident category, severity category, which is the
	23	limits, the boundaries, set by the Nuclear
	24	Regulatory Commission on designing these
	25	containers. So there would be no impacts

2 cont. 1	whatsoever.
2	The remaining five impact severities,
3	four of that five would also be survivable by the
4	containers. If you used the current tools to
5	analyze the container under those insults, the
6	container would still survive.
7	The sixth category only is the one that
8	the container might be challenged. And we don't
9	know that it will, but it would certainly be a
10	possibility. If you take 99 percent, or 1 in 100
11	of category one, then categories two through five
12	would reduce the probability by another factor of
13	100, and category six reduces it by another factor
14	of 1,000.
15	And so the likelihood of an accident
16	occurring which would even challenge the cask is
17	somewhere on the order of 1 in 1 million. And so
18	the likelihood, or probability, however you want to
19	state it, of an accident occurring which would
20	cause a release of materials from a cask, is
21	essentially zero. If the State of Nevada Gaming
22	Commission allowed games with that probability of
23	payoff, nobody would bet.
24	Now, the shipments themselves are highly
ued 25 ge 6	regulated by the Nuclear Regulatory Commission, but

4 continued on page 6

(b)

1	1	in addition, they are tracked. That is to say,
continued	2	these shipments would have on them a transmitter
	3	working in what's called a Transcom system which
	4	transmits the location of that shipment at all
	5	times.
	6	And that material, that information, is
	7	collected at a tracking unit in Washington. It's
	8	also available to all of the states. They can
	9	track a shipment as well.
	10	Basically, there are a number of
	11	requirements, one of which is you have to notify
	12	the state in advance that you're going to enter
	13	their state. You have to do it a week in advance,
	14	then you have to do it several hours in advance,
	15	and those states can then simply plug into this
	16	system and read out where the thing is and know
	17	exactly where it is at all times.
	18	But the important thing is that that
	19	means it's a more difficult shipment to interdict
	20	by someone who has some malevolent intent in mind.
	21	And so we've looked at what kinds of
	22	things could someone do to one of these shipments
	23	if they were intent on causing damage. Not just
	24	the accident, but some intentional act on the part
	25	of saboteurs. (b)

1	Again, the organization I had at Sandia
2	in the early '80s conducted tests on scale models
3	and on full-scale casks. Battelle Institute in
4	Ohio conducted scale tests as well, and the results
5	of all of these programs agreed quite closely.
6	And the result is that if you were to
7	use some sort of munition, generally thought of as
8	a military munition, to attack one of these casks,
9	you can, in fact, poke a hole in it.
10	But when you do that, the hole you put
11	in the cask at the outside of the cask, is huge,
12	but the hole in the inner container of the cask
13	where the fuel is kept is relatively small. And
14	that's the determinant of how much gets out.
15	In a recent study in which they took the
16	early experimental results and applied them to
17	modern casks, and, again, as I said, we have
18	calculational tools to do this now as a result of
19	the scale model and full-scale testing we've done,
20	you apply these to the existing casks today.
21	It turns out that the result of an
22	accident pardon me, the result of a sabotage
23	event is still well within the kinds of
24	environmental impacts, including impact to the
25	public, that you would find acceptable. The latent

5 continued on page 8

	1	cancer fatalities are somewhat less than 1 in 100,
5	2	or 1/100th of one latent cancer fatality.
continued on page 9	3	The other thing that isn't factored into
ni page 3	4	those kinds of considerations is the fact that
	5	these munitions are not easy to use. And two
	6	things determine the effectiveness of these
	7	munitions. They're shaped charges. They're the
	8	kind of things the Army uses as bazookas.
	9	One of these factors is called
	10	obliquity, which means that the shaped charge has
	11	to hit the surface of the cask at 90 degrees. If
	12	it hits as little deflection as 10 degrees, then
	13	the jet is deflected off, and it doesn't penetrate
	14	Now, in both cases, the rail cask and
	15	the concrete cask, the sides of the cask are such
	16	that that area of the cask that you can hit and be
	17	successful in poking a hole in it is quite small.
	18	Furthermore, these weapons, if you're
	19	going to use a launcher to fire them, it's
	20	incredible. The closer you are, the more likely
	21	you are to miss, because the flight of the
	22	projectile is very erratic when it first comes out
	23	of the launch tube. It's only at ranges of about
	24	100 yards that the flight becomes predictable,
	25	where the person firing it can actually aim it at

	1	something and have a fair chance of hitting it.
;	2	But at 100 yards you're trying to hit a
continued on page 10	3	band on a cask that's maybe four inches wide, maybe
	4	six inches wide at the most. And so the likelihood
	5	of satisfying the obliquity requirements are very,
	6	very low.
	7	Secondly, there is a requirement for
	8	this kind of munition to be detonated at a precise
	9	distance from the surface it's trying to penetrate.
	10	In these shoulder-launch devices there is a nose
	11	cone on there that provides you with that standoff
	12	distance, and the fuse is in the nose cone. So
	13	when it touches the surface, everything goes off.
	14	The only problem is that these have
	15	personnel barriers around them, and so that is what
	16	the nose cone is going to hit, and you have
	17	defeated the munition simply because of standoff
	18	distance.
	19	Now, there is a possibility, if you want
	20	to entertain it, that that person intent on causing
	21	this damage could gain physical control of this
	22	unit and, in fact, set the system up so it is
	23	optimal in its capability for destroying the cask.
	24	Understand, though, that there is a
	25	button in the truck, in the cab of the truck, so

<u>-</u>	1	that if the driver senses any sort of interdiction,
continued	2	he presses the button and red lights go off in all
	3	of these control centers all over, and response to
	4	the system is quite good, quite quick.
	5	So it takes time for the saboteur to set
	6	up the conditions he wants and to detonate his
	7	device. And in the meantime, you've got all the
	8	resources that we've got coming down on him, and
	9	that does not make it a very attractive target for
	10	a saboteur.
3	11	Basically, as it says in the EIS, and I
	12	agree with it here, risks from transporting these
	13	materials are extremely low. The dominant impact
	14	on the public will be ordinary traffic accidents,
	15	and not radiological accidents.
	16	As a result of that, as a result of the
	17	fact that the radiological consequences of
	18	transporting these materials is so incredibly low,
	19	it does not make a whole lot of difference at this
	20	point in time when or where the decisions are made
	21	about how to move these materials. It's all been
	22	done before, it's all been done safely, and it's
	23	all been done with little or no impact to the
	24	public.
	25	If there are any questions, I'd be glad

- 1 to entertain those.
- 2 HEARING OFFICER: Thanks very much. The next
- 3 speaker who has signed up is Mary Ellen Giampaoli.
- 4 Good morning.

